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In the 1970s, Hajos and Parrisand Wiechert, Eder, and
Sauer discovered that proline catalyzes intramolecular aldol

reactions with high enantiomeric excesses and chemical yields

(Scheme 1). In the 1980s, Agahfibund examples of asymmetric
intramolecular aldol cyclizations of achiral diketones catalyzed
by proline (Scheme 2). In this century, List, Lerner, and Barbas
reported intermolecular aldol reactions catalyzed by prdiiaed
these studies have been extended to a variety of substfates.
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n=1(S) 95% ee, 99% vield (ref. 1)
n=1(5) 84% ee, 87% vield (ref. 2)
n=2(8) 71% ee, 83% vield (ref. 2)

n=1(8) 93% ee, 100% vield (ref. 1)
n=2(5) 73% ee, 52% yield (ref. 1}
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transition-state geometries were located using hybrid density
functional theory (B3LYPY and the 6-31G¥ basis set as
implemented in Gaussian 98Each stationary point was char-

Although many details abogt the proline-catalyzed'intramolecu_la_r acterized by frequency analy$fsCharges were computed with
aldol reaction have been discovered, an explanation of the origin ine ChelpG metho#?

of stereoselectivity has been elusive.

Proline-catalyzed aldol reactions involve enamine intermedi-
ates®” and the rate-determining step of the reaction is theCC
bond forming step? Similar mechanisms are found in type-|
aldolase%and catalytic antibodies that are type-I aldolase mimics
(38C2 and 33F12.

While studying the proline-catalyzed intramolecular aldol
reaction, Hajos and Parrish reported the isolation of aldol
intermediates such d3n = 1, R= Me, and R= Et), and showed

that stereodifferentiation occurs in the aldol step, before dehydra-

tion.! Agami later found that the reaction is second-order in proline
and exhibits a small negative nonlinear effettExperiments
have shown that the carboxylic acid group and pyrrolidine ring
of proline are essential for effective asymmetric inductiéri 11

We first studied the proline-catalyzed intramolecular aldol
reactions of 4-alkylheptane-2,6-dioned.(Four diastereomeric
aldol products can be formed (Scheme 3). We explored transition
states for enamine attack on the ketone; this is likely to be the
rate-determining step of the reaction, while all previous steps
leading to enamine formation are reversible. Both chair and boat
transition states, TS1TS4, for forming the six-membered ring
were located and analyzed. The chair transition states were always
lower in energy, and only these are described here.

Two chair transition states were located for the reaction of the
(9-proline enamine oRa (R = Me) to form RS- and ER)-
ketols; these are shown in Figure 1. In both transition states the
hydrogen bonding of the carboxylic acid proton to the forming
alkoxide oxygen provides charge stabilization and intramolecular

Other amino acids and amino acid derivatives have also beenyiq catalysis. This is a general feature of enamine-mediated aldol
used, but the enantioselectivities observed are generally not aggctiong3

impressive as with prolin&:*?

The lower energy of transition state,§)-3 relative to transition

We have explored the transition states and intermediates ofg;ate GR)-3 appears to be due to two factors: (1) hydrogen

these reactions. Our studies build on our previous investigation

of achiral amine-catalyzed aldol reactiddgll ground-state and
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coo’ Figure 1. Transition-state geometries for cyclization of the enamine of

R diketone2a.

nitrogen of the proline. Thé®NCH- -0~ distance is 2.5 A in QCOOH 000 we 7 C(CC’O’ o
transition stateR,S)-3 and 3.2 A in transition stateS[R)-3, as )\/\% &(//(ﬂ . Nm
C 2 > € ST

shown in Figure 2? The 1 kcal/mol preference foR(S-3 is in

reasonable agreement with experiment where R&){ketol o Me o
(corresponding to theR S)-iminium intermediate) is isolated and 4 Sb

upon dehydration forms th&J-o.,3-unsaturated cyclic ketone in (5,56 (R,R)-6

42% ee (Scheme 3) Eqaci = 9.1 keal/mol Eact = 12.5 keal/mol

Transition states were also located for the reactio®ppfoline
enamine2b (R = tert-butyl), to form ketol intermediates. The
two chair transition states are now within 0.1 kcal/mol of each
other, consistent with the experimental absence of enantioselec-
tivity for this case®?°

Two chair transition states for the reaction &)-proline
enamine4,?! leading to the bicyclic aldol intermediatesa and
5b, were located as shown in Figure 2. For primary and secondary
amine-catalyzed aldol reactions, we found that formatiooi®f

hydrindanone ketol intermediates is favored otrans®® The )¢ *YOa

favorable electrostatic interactions between the carbonyl of the ,—N., _a el thed=00 —MNebos N thed = 31°
five-membered ring and the electron-rich enamirtgond as well K W et 7{\ 0o Negdb Cabeecoa
as the inherent stability afis-hydrindanone systems relative to f N d@@f d A d f

transt®22 contribute to this preference.

The energy barrier to formation 0§0)-6 is 9.1 kcal/mol, 3.4
kcal/mol lower than the barrier to formation d®,R)-6.2% Tran-
sition state R R)-6 is destabilized relative to transition sta®&S)-

6, because intramolecular hydrogen bonding forces the iminium
double bond out of planarity irR(R)-6; this distortion in transition
state R,R)-6 is much larger due to the conformational restraints
imposed by the hydrindanone ring system; the Newman projec-
tions show this. The favorable electrostatic interactiof?tfCH- -

0°~ also contributes to the lower energy of transition st&{g){6.

The *NCH- -O’~ distance is 2.4 A in transition statg§ $)-6 and
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Figure 2. Transition-state geometries for cyclization of enamine

Either mechanism is consistent with the second-order dependence
on proline concentratiotf.

Proline has been appropriately called a “micro-aldoldgdike
the aldolase enzymes, this amino acid forms enamine intermedi-
ates. We have shown how selective hydrogen bonding and the
geometry of proton transfer in the transition state determines the
stereochemistry of the productsStudies of the stereoselectivities
of proline-catalyzed intermolecular aldol reactions are in progress.
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